
DNS
(Domain Name Services)

The road sign from “Northern Exposure”

Written February, 1996 by Gary A. Donahue

lordgad@planet.net
Comments welcome

Page 2

What is DNS anyway?
DNS stands for Domain Name System. Simply put, Computers like to speak to each other using
numbers, and humans prefer words. DNS is a way of letting us request complicated address
information from systems, using simple names instead of the internal numbers.

For example,

netman.compucom.com is easier to remember than 198.177.254.196

DNS: Who needs it?
DNS is needed anytime you wish to access a device over a network using TCP/IP, and you know
only the name of the device as opposed to its IP address. You can also use DNS to get the name
of a device, using its IP address. This is called reverse name lookup, and we’ll look at that a little
later.

The Internet: A Brief History
Remember the ARPANET? No? Not to worry.

 Before there was the Internet, there was the ARPANET. The ARPANET was originally an
experiment started by the Department of Defense’s Advanced Research Projects Agency, or
ARPA (Later changed to DARPA). This super network was designed so that the government
could share valuable computing resources. In the 80’s, more and more networks connected to
the ARPANET, making what was originally a network of only a handful of hosts, a network of
tens of thousands.

In 1988, DARPA decided the ARPANET experiment was over, and dismantled it. The National
Science Foundation built another network in its place called NSFNET. Today this network is the
backbone of the Internet.

Today the Internet connects hundreds of thousands of hosts and is growing every day by a
staggering amount. The current bandwidth of the NSFNET is 45 megabits per second. (As a
comparison, twisted pair Ethernet is 10mbps, and fast Ethernet is 100mbps!) The original
ARPANET sported a bandwidth of only about 50 kilobits per second. Almost 1000 times slower!

A Brief Note on TCP/IP Addresses

IP addresses are written in what is called dotted octet format. This the common method of
displaying a 32 bit address as four 8 bit numbers separated by a dot. As each number between
the dots is 8 bit, they can be any number between 0 and 255. Sometimes these addresses are
written in hex format, however here we will stick to decimal.

Page 3

DNS: How do we use it?

DNS works in a hierarchical structure, much the way the UNIX or DOS file structure works. The
symbols used for the root and branches however, are different. At the very top of the tree, you
have the root, which is symbolized by the null character. Sometimes this is symbolized by a
single dot. This is in fact a separator followed by a null. A DNS address name is given with each
node in the string separated by a dot, starting with the least significant node up to and including
the top level domain under the root.

For example;

The user djump
in the domain ncc
which is under the domain netman
which is under the domain compucom
which is under the top level domain com
which is under the root domain

would be written djump.ncc.netman.compucom.com.

Note that each name is a node. Also note that all names except djump are domain
names. They could also be called subdomain names as they are all contained within
higher domains (.com is under the root domain!)

Note also that the name string ends with a period. This is actually followed by a null
character, which of course you cannot see. This last dot (and subsequent null)
represents the root of the tree.

Page 4

DNS: How does it work?
DNS is a wonderful thing. The problem is, who keeps track of all these names and how they
relate to all these addresses? In the days of the ARPANET, the Stanford Research Institute
(SRI) maintained a file containing all of the hosts on the net and their corresponding address. In
the days of only a hundred hosts, this was not a big deal. As the net grew, however, this file
(hosts.txt) became very large and cumbersome. Another issue is that since this file was created
in one place, all other systems on the net would have to download it on a periodic basis, to keep
their database current with SRI’s. This not only lead to potential delays in information reaching
the hosts, but a bottleneck in the net as 10,000 systems would try to download from the SRI
machine in one day.

To alleviate all of these headaches, DNS was invented. DNS takes the responsibility of
name/address resolution and places it on each individual domain. All the top level has to do is
look at the name you give it and send it on the first leg of its journey. By the same token, no
longer must we rely on other systems to supply us with table updates after a change. Since each
domain updates its own tables, changes are reflected as soon as they are made.

Lets follow the steps of name resolution using the above example.

aeinstien.dev.nasa.gov pings djump.ncc.netman.compucom.com (It could happen!)
note: each query is to locate djump.ncc.netman.compucom.com

aeinsteins name server is dev.nasa.gov

QUERY RESPONSE
aeinstein looks to dev.nasa.gov Not Found: Look to .com
dev.nasa.gov looks to the root server name server for .com is at 111.111.111.111
dev.nasa.gov looks to 111.111.111.111 name server for compucom.com is at

222.222.222.222
dev.nasa.gov looks to 222.222.222.222 name server for netman.compucom.com is at

333.333.333.333
dev.nasa.gov looks to 333.333.333.333 name server for ncc.netman.compucom.com is

at 444.444.444.444
dev.nasa.gov looks to 444.444.444.444 djump is at address 444.444.444.555

dev.nasa.gov tells aeinstein the direct address for djump.ncc.netman.compucom.com.!

NOTE: Some of these IP addresses are obviously fake. Real IP addresses numbers are 8bit and
as such cannot exceed 255 in decimal, i.e. 198.177.254.196

Page 5

Caching
In the example we just gave, you can see that the name resolution process can be quite
extensive. The name server dev.nasa.gov has to do a lot of work, repeatedly narrowing the
search to find domains closer to the target host.

To help alleviate the load on the name servers, they do something called caching. When a name
server successfully locates another name server, it records the name servers address, and also
what domains or zones it has authority over. The next time a request is made to that domain, the
local name server does not have to start at the root and work its way down. Instead, having a
closer match already stored, it goes directly to the closest match and takes it from there.

The drawback with this method (and with all caches) is that the information in the cache may not
match the actual data. If actual tables somewhere else on the net get updated, these changes
are not updated in all the caches around the world.

To help minimize the use of out of date data in a cache, data in the cache is assigned a time to
live (TTL). After the time to live has expired, that item is deleted from the cache. When a match
is no longer found in the cache, data must be again retrieved the old fashioned way. If the TTL is
high, then performance is very good, but accuracy over time suffers. Inversely if the TTL is low,
then accuracy is high, but performance may suffer from having to do more lookups.

"" (root)

.com .edu .mil .gov

compucom

netman

ncc

djump

nasa

dev

aeinstein

Using the same example, lets look at name resolution after the first request was made, and the
resulting name server entries are cached on the dev.nasa.gov server.

aeinstien.dev.nasa.gov pings djump.ncc.netman.compucom.com

QUERY RESPONSE
aeinstein looks to dev.nasa.gov ncc.netman.compucom.com found in cache!

IP address for this server is 444.444.444.444

dev.nasa.gov looks to 444.444.444.444 djump is at address 444.444.444.555

dev.nasa.gov tells aeinstein the direct address for djump.ncc.netman.compucom.com.!

NOTE: These IP addresses are obviously still fake.

As you can see, there are considerable less steps involved now that the
ncc.netman.compucom.com server address is in dev.nasa.gov’s cache! No longer does
dev.nasa.gov have to start at the root and keep looking. (At least until TTL expires.)

Page 6

Reverse name lookup

Say you have an IP address, and you wish to know the host name associated with it. Well in
UNIX you would use nslookup. But how does nslookup get this information? Through an inverse
query. Inverse queries are also used for some authentication processes across the net.

Think about how the DNS structure is designed. Starting at the root, a tree grows downward
branching further and further until the desired domain and host names are found. Using a table in
the local domain, that name is then mapped to a given address.

To find a host name given an address would require an exhaustive search of just about every
domain in the tree! No small task considering the number of domains out there!

The solution is rather ingenious. What if every domain in the tree also had a table that mapped
IP addresses to their given host names? If these addresses were also somehow in their own
domain, shared by all systems on the Internet, then it would be a very simple thing to find a
given IP address anywhere on the net!

In reality, there is a domain called “in-addr.arpa”. Each DNS name server then has a DNS db file
that maps the addresses within its domain to it associated host name. This is basically the
reverse of the host table. A sample reverse table may be viewed later in this document.

Each node in the table is named after the IP address of the node, in dotted octet notation. Note
however that in this table, the IP address appears backwards! This is because it is not truly an
address but a name. Remember that IP addresses are given in most to least significant order,
and host names are given in least to most significant order. When we make the IP address a
name, we reverse the order, thus allowing us to use existing name hierarchy methods.

For example (See example files later in this document for an explanation of these records):

In the host table for allerion.com we have the entry:

gdonahue IN A 198.177.251.50
IN HINFO Gary donahue’s PC

In the reverse table for the 198.177.251 network we have the entry:

50.251.177.198.in-addr.arpa IN PTR gdonahue.allerion.com.

Page 7

DNS Related Files
How does a name server know that 198.177.251.50 = gdonahue.allerion.com? Database files of
course! All data regarding DNS is stored in a set of files which are pointed to by the file
named.boot. This is a BIND default file name and can be changed on the startup of the DNS
daemon (named) with a command line. The examples shown here are taken from the actual
database files of the name server for allerion.com. The host name for allerion.com’s name
server is linus.allerion.com.

/etc/named.boot

This file points to the location of all other database files for use by named (The daemon that
controls DNS).

The first line indicates that the files are to be located in the /etc directory.

The remaining lines are comprised of three fields, the work “primary”, the domain that the server
is authoritative for, and the file to reference for that domain.

The cache line indicates that the file for root name services information is named.ca.

You’ll notice that the next two lines seem to indicate that this name server controls TWO
domains. The plan is to make allerion.com become netman.compucom.com. While the transition
takes place, we though it would be a good idea to still let people access using the old domain
name. What makes this interesting is that while this domain is allerion.com, it is ALSO
netman.compucom.com!

All the lines containing numbers relate to reverse name lookup. For example, if you request the
name for address 198.177.251.50, then this table tells named to look to the file
named.reverse.251 (see reverse name lookup section)

The word “primary” indicates that this is the primary DNS server for the listed domain.

The second record in each primary line also provides the origin for that lines db file. The origin is
the domain name that is automatically appended to host names not ending with a period for that
file.

directory /etc

cache . named.ca
primary allerion.com named.hosts
primary netman.compucom.com named.netman.hosts
primary 0.0.127.in-addr.arpa named.localhost
primary 251.177.198.in-addr.arpa named.reverse.251
primary 252.177.198.in-addr.arpa named.reverse.252
primary 253.177.198.in-addr.arpa named.reverse.253
primary 254.177.198.in-addr.arpa named.reverse.254
primary 242.104.192.in-addr.arpa named.reverse.242

Page 8

/etc/named.localhost

This file is needed so that lookups from this name server to itself functions properly. Since no
one has responsibility for the 127 domain, it is up to each host to maintain it. 127.0.0.1 is the
address of the local host. Every system has this file or something similar. For a description of the
SOA record, see the named.hosts file information.

/etc/named.ca

This file is not truly a cache as the file would imply. Originally this information was loaded into
the named cache, hence the name. Now the file contains hints as to the location of the root
name servers. The “.” refers to the root domain.

This table must be manually updated. The information can be gotten from the inter-NIC, and is
update locally by the administrator.

The 99999999’s are a TTL (time to live) indicator. 99999999 means a very long time. This is in
fact not used anymore. Looks cool in the tables though…

0.0.127.in-addr.arpa. IN SOA linus.allerion.com. jbriar.allerion.com. (
 32 ; Serial
 3600 ; Refresh
 300 ; Retry
 3600000 ; Expire
 14400) ; Minimum

 IN NS linus.allerion.com.
1 IN PTR localhost.allerion.com.

1.0.0.127.in-addr.arpa. IN PTR localhost.

. 99999999 IN NS ns.psi.net.
ns.psi.net. 99999999 IN A 192.33.4.10
. 99999999 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 99999999 IN A 198.41.0.4
. 99999999 IN NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 99999999 IN A 128.9.0.107
. 99999999 IN NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 99999999 IN A 192.33.4.12
. 99999999 IN NS D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET. 99999999 IN A 128.8.10.90
. 99999999 IN NS E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET. 99999999 IN A 192.203.230.10
. 99999999 IN NS F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET. 99999999 IN A 39.13.229.241
. 99999999 IN NS G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET. 99999999 IN A 192.112.36.4
. 99999999 IN NS H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET. 99999999 IN A 128.63.2.53
. 99999999 IN NS I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET. 99999999 IN A 192.36.148.17

Page 9

/etc/named.hosts
(some data removed in the interest of space)

This file has been drastically reduced in size. The actual file is about three pages long.

Looking at the file from the top down we see:

The SOA record Start Of Authority. You will find this record at the top of most of the DNS
files. Note that in this file, the first character is a “@”, but in localhost, it
is “0.0.127.in-addr.arpa.” The “@” is an abbreviation which means the
domain name is the same as the origin. The parentheses allow the data
to span more than one line. IN stands for Internet. The first name after
the SOA, is the host where this file was created on. The next name is
the host or mail address of the person responsible for the data.

@ IN SOA linus.allerion.com. jbriar.allerion.com.
 (
 32 ; Serial
 3600 ; Refresh
 300 ; Retry
 3600000 ; Expire
 14400) ; Minimum

 IN NS allerion.com.
; IN MX 10 netmanwall.allerion.com.
 IN MX 10 linus.allerion.com.
;
ncc.allerion.com. IN NS ncc6k.ncc.allerion.com.
;
lab.allerion.com. IN NS labdns.lab.allerion.com.
;
localhost IN A 127.0.0.1
news IN CNAME linus.allerion.com.
;
;--------------------[Production Ethernet]----------------------
cisco_eth1 IN A 198.177.251.1
 IN HINFO cisco_eth1 interface
gdonahue IN A 198.177.251.50

IN HINFO Gary Donahue
wcampbel IN A 198.177.251.69

IN HINFO Warren Campbell
;
;-----------------------[Production Token Ring]----------------
cisco_tok0 IN A 198.177.254.33
 IN HINFO cisco token ring 0
jbriar IN A 198.177.254.34
 IN HINFO John Briar x3340
;
;-----------------------[Stuff in the NCC]--------------------
ncc_router IN A 192.104.242.1
ncc6k.ncc.allerion.com. IN A 192.104.242.2
;
;-----------------------[LAB DNS Machine]---------------------
labdns.lab.allerion.com. IN A 198.177.252.69

Page 10

Within the SOA record we see some additional line entries.

32 ; Serial This is version # 32 of the file
 3600 ; Refresh Refresh after 3600 seconds
 300 ; Retry Retry after 300 seconds
 3600000 ; Expire Expire after a long time
 14400) ; Minimum Time to Live

NS Records Name Server. There will be one NS entry for every name server in this
domain. These records point to the next level down in the DNS tree.

A Records Address Records. For every host name we wish to associate with an IP
address, we enter an A record containing the host name and its
corresponding IP address. Note that some host names have a period
after them and some do not. If a host name is given WITH a period, it is
considered an absolute address. If there is no period, the local domain is
appended to the host name automatically.

HINFO Records Host INFOrmation. According to the specs, this is supposed to be two
strings which supply information regarding the hosts hardware type and
operating system. As you can see, that is not the case here. Each string
is also supposed to be in quotes if it contains a space. Alas, another rule
broken…

CNAME Records Canonical NAME. Note the host name “news”. The CNAME records
makes an alias to another name. Whenever the host name news is
referenced, it will be forwarded to linus.allerion.com.

Other acceptable types of records not seen here include;

TXT Text information

WKS Well known services

PTR Pointer. Used for address to name mapping (see reverse tables)

Page 11

/etc/named.reverse.251
(some data removed in the interest of space)

The reason that this file is the reverse lookup file for the 198.177.251 network is that the
named.boot file says it is! (Take a look, you’ll see!)

Note that the leftmost entries DO NOT contain the whole in-addr.arpa name! This is a shortcut.
Remember that sometimes the period at the end of the name is important? Well if that period is
left off, then the origin name is appended to the name given. In this case the origin (as given in
named.boot) is 251.177.198.in-addr.arpa! Note also that the host names on the right DO have
the period. The origin of this file is again, 251.177.198.in-addr.arpa. We wouldn’t want that to be
appended to gdonahue, as gdonahue’s domain is allerion.com.

Note that the first line of this file is an SOA (Start Of Authority) record. The @ indicates that the
origin should be inserted here in its place. Another shortcut. We administrators hate to type…

The next files show the reverse lookup tables for other networks belonging to allerion.com.

@ IN SOA linus.allerion.com. jbriar.allerion.com. (
 32 ; Serial
 3600 ; Refresh
 300 ; Retry
 3600000 ; Expire
 14400) ; Minimum

 IN NS linus.allerion.com.

1 IN PTR cisco_eth1.allerion.com.
2 IN PTR natprobe.allerion.com.
5 IN PTR dgopal.allerion.com.
6 IN PTR mvolikas.allerion.com.
7 IN PTR igurler.allerion.com.
10 IN PTR bkalish.allerion.com.
16 IN PTR allerion1.allerion.com.
18 IN PTR jdimuzio.allerion.com.
44 IN PTR apollo.allerion.com.
45 IN PTR dkeilty.allerion.com.
47 IN PTR jcort.allerion.com.
48 IN PTR jbauer.allerion.com.
49 IN PTR panger.allerion.com.
50 IN PTR gdonahue.allerion.com.
51 IN PTR gad.allerion.com.
55 IN PTR rperez.allerion.com.
60 IN PTR isbuild.allerion.com.
69 IN PTR wcampbel.allerion.com.

Page 12

/etc/named.reverse.252

/etc/named.reverse.253

Note the subtle differences in these files compared with the previous example. The first
character in the file is not a "@”, but rather the full domain name. Also the IP addresses on the
left side are given in their canonical file names (The period at the end indicates this)

The biggest change in these files is the fact that there are NS records! The reason for this is that
this Name server does not keep the database files for these domains! In order to get address to
name resolution for say, 12.253.177.198.in-addr.arpa, this record tells us to look to the name
server labdns.lab.allerion.com! Both of these examples are for subdomains under allerion.com.

allerion.com. IN SOA linus.allerion.com. jbriar.allerion.com. (
 32 ; Serial
 3600 ; Refresh
 300 ; Retry
 3600000 ; Expire
 14400) ; Minimum

252.177.198.in-addr.arpa. IN NS labdns.lab.allerion.com.

allerion.com. IN SOA linus.allerion.com. jbriar.allerion.com. (
 32 ; Serial
 3600 ; Refresh
 300 ; Retry
 3600000 ; Expire
 14400) ; Minimum

253.177.198.in-addr.arpa. IN NS labdns.lab.allerion.com.

Page 13

As you may have guessed, this name server IS responsible for this network. An interesting note
here is that this network is divided into subnets. DNS doesn’t really care about this, but we do, so
there have been many comments added to help us understand what is going on.

/etc/named.reverse.254
@ IN SOA linus.allerion.com. jbriar.allerion.com. (
 32 ; Serial
 3600 ; Refresh
 300 ; Retry
 3600000 ; Expire
 14400) ; Minimum

 IN NS linus.allerion.com.

;development token ring
33 IN PTR cisco_tok0.allerion.com.
34 IN PTR jbriar.allerion.com.
35 IN PTR slma.allerion.com.
36 IN PTR tjpe.allerion.com.
37 IN PTR development.allerion.com.

;development Ethernet
98 IN PTR carson.allerion.com.
99 IN PTR dave.allerion.com.
100 IN PTR mary.allerion.com.
101 IN PTR cms.allerion.com.

; [----NCC: Moved to new segment ----]
;
; secure internet segment
;
161 IN PTR cisco.allerion.com.
162 IN PTR ccgate.allerion.com.
167 IN PTR netmanwallin.allerion.com.
;
; UNsecure internet segment
193 IN PTR mstar.allerion.com.
196 IN PTR linus.allerion.com.
197 IN PTR knowitall.allerion.com.
198 IN PTR pubsrvr.allerion.com.
222 IN PTR netmanwall.allerion.com.

Page 14

/ etc/named.reverse.242

This is yet another example of a network that allerion.com owns, but does not do DNS for. All
requests are passed on to ncc6k.ncc.allerion.com (as per the NS record)

allerion.com. IN SOA linus.allerion.com. jbriar.allerion.com. (
 32 ; Serial
 3600 ; Refresh
 300 ; Retry
 3600000 ; Expire
 14400) ; Minimum

242.104.192.in-addr.arpa. IN NS ncc6k.ncc.allerion.com.

Page 15

Terminology
domain name space The whole tree of domain names, from the least significant node

all the way up to the root

domain A domain is simply a branch of the domain name space. The
name of the domain is the same as the name of the top most
node in the branch. A domain contains information regarding all
the hosts within the domain.

subdomain A subdomain is a branch under a domain. In reality, the terms
subdomain and domain can be used almost interchangeably.
For example, compucom is a domain unto itself. It is also a
subdomain of the domain .com! The domain “root” is the only
domain that is NOT a subdomain!

host A device which is pointed to in a domain. A host may be the
beginning of a new subdomain.

root The absolute top of the domain name space tree. This is
analogous to the root directory in UNIX or DOS.

node Each unit of data in the domain name space

sibling node any node that resides under another node. For example
compucom is a sibling node of the node com (compucom.com).

top level domain The highest level of the domain name space under the root.
(.com, .edu, .mil etc.)

absolute domain name The complete domain name from the host all the way to (and
including) the root

fully qualified domain name (FQDN) Same as absolute domain name

canonical name A Fully qualified domain name.

name server This is the device that contains the tables and programs
regarding a zone’s host addresses. The name server has
authority for the zone.

zone the area of the DNS name space controlled by a name server.
This is not necessarily the whole domain, as some subdomains
can have their own name servers.

root name server The root name server contains information pointing to the name
servers responsible for the top level domains (In the US, the
root name servers ARE responsible for this information). These
servers are very important to the operation of the Internet.
Because of this, there are several spread across the net. (These
servers are queried as much as 20,000 times an hour!)

resolver The client that requests name resolution from a name server

Page 16

stub resolver a resolver that off-loads most of the burned of finding an answer
to a query to the name server. Most resolvers are stub
resolvers.

name resolution The act of resolving the associated IP address from a given host
name

